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Abstract
Program sensitivity measures the distance between the outputs of a program when

run on two related inputs. This notion, which plays a key role in areas such as data privacy
and optimization, has been the focus of several program analysis techniques introduced in
recent years. Among the most successful ones, we can highlight type systems inspired by
linear logic, as pioneered by Reed and Pierce in the Fuzz programming language. In Fuzz,
each type is equipped with its own distance, and sensitivity analysis boils down to type
checking. In particular, Fuzz features two product types, corresponding to two different
notions of distance: the tensor product combines the distances of each component by
adding them, while the with product takes their maximum.

In this work, we show that these products can be generalized to arbitrary Lp distances,
metrics that are often used in privacy and optimization. The original Fuzz products, ten-
sor and with, correspond to the special cases L1 and L∞. To ease the handling of such
products, we extend the Fuzz type system with bunches—as in the logic of bunched
implications—where the distances of different groups of variables can be combined us-
ing different Lp distances. We show that our extension can be used to reason about
quantitative properties of probabilistic programs.

1 Introduction
When developing a data-driven application, we often need to analyze its sensitivity, or
robustness, a measure of how its outputs can be affected by varying its inputs. For ex-
ample, to analyze the privacy guarantees of a program, we might consider what happens
when we include the data of one individual in its inputs [12]. When analyzing the stability
of a machine-learning algorithm, we might consider what happens when we modify one
sample in the training set [8].

Such applications have spurred the development of several techniques to reason about
program sensitivity [25, 10]. One successful approach is based on linear-like [15] type
systems, as pioneered in Reed and Pierce’s Fuzz language [25].

The basic idea behind Fuzz is to use typing judgments to track the sensitivity of a pro-
gram with respect to each variable. Each type comes equipped with a notion of distance,
and the typing rules explain how to update variable sensitivities for each operation. Be-
cause different distances yield different sensitivity analyses, it is often useful to endow
a set of values with different distances, which leads to different Fuzz types. For ex-
ample, like linear logic, Fuzz has two notions of products: the tensor product ⊗ and the
Cartesian product & (with). The first one is equipped with the L1 (or Manhattan) distance,
where the distance between two pairs is computed by adding the distances between the
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corresponding components. The second one is equipped with the L∞ (or Chebyshev)
distance, where the component distances are combined by taking their maximum.

The reason for focusing on these two product types is that they play a key role in
differential privacy [12], a rigorous notion of privacy that was the motivating application
behind the original Fuzz design. However, we could also consider equipping pairs with
more general Lp distances, which interpolate between the L1 and L∞ and are extensively
used in convex optimization [9], information theory [11] and statistics [16]. Indeed, other
type systems for differential privacy inspired by Fuzz [22] include types for vectors and
matrices under the L2 distance, which are required to use the Gaussian mechanism, one of
the popular building blocks of differential privacy. Supporting more general Lp metrics
would allow us to capture even more such building blocks [18, 1], which would enable
further exploration of the tradeoffs between differential privacy and accuracy.

In this paper, we extend these approaches and show that Fuzz can be enriched with
a family of tensor products ⊗p, for 1 ≤ p ≤ ∞. These tensor products are equipped
with the Lp distance, the original Fuzz products ⊗ and & corresponding to the special
cases ⊗1 and ⊗∞. Moreover, each connective ⊗p is equipped with a corresponding “linear
implication” ⊸p, unlike previous related systems where such an implication only exists
for p = 1. Following prior work [4, 3], we give to our extension a semantics in terms of
non-expansive functions, except that the presence of the implications ⊸p forces us to
equip input and output spaces with more general distances where the triangle inequality
need not hold.

A novelty of our approach is that, to support the handling of such products, we gener-
alize Fuzz environments to bunches, where each Lp distance comes with its own context
former. Thus, we call our type system Bunched Fuzz. This system, inspired by languages
derived from the logic of Bunched Implications (BI) [24] (e.g. [23]), highlights differences
between the original Fuzz design and linear logic—for example, products distribute over
sums in Fuzz and BI, but not in linear logic. While similar indexed products and func-
tion spaces have also appeared in the literature, particularly in works on categorical
grammars [21], here they are employed to reason about vector distances and function
sensitivity.

While designing Bunched Fuzz, one of our goals was to use sensitivity to reason about
randomized algorithms. In the original Fuzz, probability distributions are equipped with
the max divergence distance, which can be used to state differential privacy as a sensi-
tivity property [25]. Subsequent work has shown how Fuzz can also accommodate other
distances over probability distributions [3]. However, such additions required variants
of graded monads, which express the distance between distributions using indices (i.e.
grades) on the monadic type of distributions over their results, as opposed to sensitivity
indices on their inputs, as it was done in the original Fuzz. In particular, this makes it
more difficult to reason about distances separately with respect to each input. Thanks to
bunches, however, we can incorporate these composition principles more naturally. For
example, Bunched Fuzz can reason about the Hellinger distance on distributions without
the need for output grading, as was done in prior systems [3].

We will also see that, by allowing arbitrary Lp norms, we can generalize prior case
studies that were verified in Fuzz and obtain more general methods for reasoning about
differential privacy (Section 5). Consider the Lp mechanism [1, 18], which adds noise to
the result of a query whose sensitivity is measured in the Lp norm. Since Fuzz does
not have the means to analyze such a sensitivity measure, it cannot implement the
Lp mechanism; Bunched Fuzz, however, can analyze such a measure, and thus allows for
a simple implementation in terms of the exponential mechanism. Such a mechanism, in
turn, can be used to implement a variant of a gradient descent algorithm that works under
the Lp norm, generalizing an earlier version that was biased towards the L1 norm [27].
Summarizing, our contributions are:

• We introduce Bunched Fuzz, an extension of Fuzz with types for general Lp distances:
we add type constructors of the form ⊗p (for 1 ≤ p ≤ ∞) for pairs under the Lp

distance along with constructors of the form ⊸p for their corresponding function
spaces. To support the handling of such types, we generalize Fuzz typing contexts
to bunches of variable assignments.
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• We give a denotational semantics for Bunched Fuzz by interpreting programs as
non-expansive functions over spaces built on Lp distances.

• We show that Bunched Fuzz can support types for probability distributions for which
the sampling primitive, which enables the composition of probabilistic programs, is
compatible with Lp distances.

• We show a range of examples of programs that can be written in Bunched Fuzz. No-
tably, we show that Bunched Fuzz can support reasoning about the Hellinger distance
without the need for grading, and we show generalizations of several examples from
the differential privacy literature.

Check the full version of this paper for more technical details [19].

2 Background
2.1 Metrics and Sensitivity
To discuss sensitivity, we first need a notion of distance. We call extended pseudosemi-
metric space a pair X = (|X|, dX) consisting of a carrier set |X| and an extended pseu-
dosemimetric dX : |X|2 → R≥0

∞ , which is a function satisfying, for all x, y ∈ |X|:
1. dX(x, x) = 0,
2. dX(x, y) = dX(y, x).

This relaxes the standard notion of metric space in a few respects. First, the distance
between two points can be infinite, hence the extended. Second, different points can be
at distance zero, hence the pseudo. Finally, we do not require the triangular inequality:

dX(x, y) ≤ dX(x, z) + dX(z, y), (1)

hence the semi. We focus on extended pseudosemimetrics because they support con-
structions that true metrics do not. In particular, they make it possible to scale the
distance of a space by ∞ and enable more general function spaces. However, to simplify
the terminology, we will drop the “extended pseudosemi” prefix in the rest of the pa-
per, and speak solely of metric spaces. In some occasions, we might speak of a proper
metric space, by which we mean a space where the triangle inequality does hold (but
not necessarily the other two requirements that are missing compared to the traditional
definition of metric space).

Given a function f : X → Y on metric spaces, we say that it is s-sensitive, for s in R≥0
∞ ,

if we have:
∀x1, x2 ∈ X, dY (f(x1), f(x2)) ≤ s · dX(x1, x2),

(We extend addition and multiplication to R≥0
∞ by setting ∞·s = s·∞ = ∞.) We may also say

that f is s-Lipschitz continuous, though the traditional definition of Lipschitz continuity
does not include the case s = ∞. If a function is s-sensitive, then it is also s′-sensitive for
every s′ ≥ s. Every function of type X → Y is ∞-sensitive. If a function is 1-sensitive, we
also say that f is non-expansive. We use X ⊸ Y to denote the set of such non-expansive
functions. The identity function is always non-expansive, and non-expansive functions
are closed under composition. Thus, metric spaces and non-expansive functions form a
category, denoted Met.
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2.2 Distances for Differential Privacy
Among many applications, sensitivity is a useful notion because it provides a convenient
language for analyzing the privacy guarantees of algorithms—specifically, in the frame-
work of differential privacy [12]. Differential privacy is a technique for protecting the
privacy of individuals in a database by blurring the results of a query to the database
with random noise. The noise is calibrated so that each individual has a small influence
on the probability of observing each outcome (while ideally guaranteeing that the result
of the query is still useful).

Formally, suppose that we have some set of databases db equipped with a metric.
This metric roughly measures how many rows differ between two databases, though the
exact definition can vary. Let f : db → DX be a randomized database query, which maps a
database to a discrete probability distribution over the set of outcomes X. We say that
f is ϵ-differentially private if it is an ϵ-sensitive function from db to DX, where the set of
distributions DX is equipped with the following distance, sometimes known as the max
divergence:

MDX(µ1, µ2) =
∑
x∈X

ln
∣∣∣∣µ1(x)

µ2(x)

∣∣∣∣ . (2)

(Here, we stipulate that ln |0/0| = 0 and ln |p/0| = ln |0/p| = ∞ for p 6= 0.)
To understand this definition, suppose that D1 and D2 are two databases at distance

1—for instance, because they differ with respect to the data of a single individual. If f
is ϵ-differentially private, the above definition implies that f(D1) and f(D2) are at most ϵ
apart. When ϵ is large, the probabilities of each outcome in the result distributions can
vary widely. This means that, by simply observing one output of f , we might be able to
guess with good confidence which of the databases D1 or D2 was used to produce that
output. Conversely, if ϵ is small, it is hard to tell which database was used because the
output probabilities will be close. For this reason, it is common to view ϵ as a privacy
loss—the larger it is, the more privacy we are giving up to reveal the output of f .

Besides providing a strong privacy guarantee, this formulation of closeness for distri-
butions provides two important properties. First, we can compose differentially private
algorithms without ruining their privacy guarantee. Note that DX forms a monad, where
the return and bind operations are given as follows:

η(x) = y 7→

{
1 if x = y

0 otherwise (3)

f†(µ) = y 7→
∑
x∈X

µ(x) · f(x)(y). (4)

Intuitively, the return operation produces a deterministic distribution, whereas bind sam-
ples an element x from µ and computes f(x). When composing differentially private
algorithms, their privacy loss can be soundly added together:
Theorem 2.1. Suppose that f : db → DX is ϵ1-differentially private and that g : db → X →
DY is such that the mapping δ → g(δ)(x) is ϵ2-differentially private for every x. Then the
composite h : db → DY defined as

h(δ) = g(δ)†(f(δ))

is (ϵ1 + ϵ2)-differentially private.

The other reason why the privacy metric is useful is that it supports many building
blocks for differential privacy. Of particular interest is the Laplace mechanism, which
blurs a numeric result with noise drawn from the two-sided Laplace distribution. If x ∈ R,
let L(x) be the distribution with density1 y 7→ 1

2e
−|x−y|.

1We use here a Laplace distribution with scale 1.
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Theorem 2.2. The Laplace mechanism L is a non-expansive function of type R → DR.2

Thus, to define an ϵ-differentially private numeric query on a database, it suffices to
define an ϵ-sensitive, deterministic numeric query, and then blur its result with Laplace
noise. Differential privacy follows from the composition principles for sensitivity. This
reasoning is justified by the fact that the Laplace mechanism adds noise proportional to
the sensitivity of the numeric query in L1 distance.

2.3 Sensitivity as a Resource
Because differential privacy is a sensitivity property, techniques for analyzing the sensi-
tivity of programs can also be used to analyze their privacy guarantees. One particularly
successful approach in this space is rooted in type systems inspired by linear logic, as
pioneered by Reed and Pierce in the Fuzz programming language [17, 25]. At its core, Fuzz
is just a type system for tracking sensitivity. Typing judgments are similar to common
functional programming languages, but variable declarations are of the form xi :ri τi:

x1 :r1 τ1, . . . , xn :rn τn ` e : σ.

The annotations ri ∈ R≥0
∞ are sensitivity indices, whose purpose is to track the effect

that changes to the program input can have on its output: if we have two substitutions
γ and γ′ for the variables xi, then the metric preservation property of the Fuzz type
system guarantees that

d(e[γ/x⃗], e[γ′/x⃗]) ≤
∑
i

ri · d(γ(xi), γ
′(xi)), (5)

where the metrics d are computed based on the type of each expression and value. This
means that we can bound the distance on the results of the two runs of e by adding
up the distances of the inputs scaled by their corresponding sensitivities. When this
bound is finite, the definition of the metrics guarantees that the two runs have the same
termination behavior. When ri = ∞, the above inequality provides no guarantees if the
value of xi varies.

Fuzz includes data types commonly found in functional programming languages, such
as numbers, products, tagged unions, recursive types and functions. The typing rules of
the language explain how the sensitivities of each variable must be updated to compute
each operation. The simplest typing rule says that, in order to use a variable, its declared
sensitivity must be greater than 1:

r ≥ 1

Γ, x :r τ,∆ ` x : τ

As a more interesting example, to construct a pair (e1, e2), the following rule says that
we need to add the sensitivities of the corresponding contexts:

Γ1 ` e1 : τ1 Γ2 ` e2 : τ2

Γ1 + Γ2 ` (e1, e2) : τ1 ⊗ τ2
.

This behavior is a result of the distance of the tensor type ⊗: the distance between
two pairs in τ1 ⊗ τ2 is the result of adding the distances between the first and second
components; therefore, the sensitivity of each variable for the entire expression is the
sum of the sensitivities for each component. In this sense, sensitivities in Fuzz behave
like a resource that must be distributed across all variable uses in a program. For the
sake of analogy, we might compare this treatment to how fractional permissions work

2The definitions do not quite match up our setting, since L is a continuous, and not discrete distribution. The
result can be put on firm footing by working with a discretized version of the Laplace distribution [13].
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in separation logic: the predicate l 7→q x indicates that we own a fraction q ∈ [0, 1] of a
resource stating that l points to x. If q = q1+q2, we can split this predicate as l 7→q1 x∗l 7→q2 x,
allowing us to distribute this resource between different threads.

The distance on ⊗ corresponds to the sum in the upper bound in the statement of
metric preservation (Equation (5)). This distance is useful because it is the one that
yields good composition principles for differential privacy. This can be seen in the typing
rule for sampling from a probabilistic distribution:

Γ ` e1 : ©τ ∆, x :r τ ` e2 : ©σ

Γ +∆ `mlet x = e1 in e2 : ©σ

Here, ©τ denotes the type of probability distributions over values of type τ . This op-
eration samples a value x from the distribution e1 and uses this value to compute the
distribution e2. We can justify the soundness of this rule by reducing it to Theorem 2.1:
the addition on contexts corresponds to the fact that the privacy loss of a program
degrades linearly under composition.

Besides the tensor product ⊗, Fuzz also features a with product &, where the distances
between components are combined by taking their maximum. This leads to a different
typing rule for & pairs, which does not add up the sensitivities:

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 & τ2

If we compare these rules for pairs, we see a clear analogy with linear logic: ⊗ requires
us to combine contexts, whereas & allows us to share them. Fuzz’s elimination rules
for products continue to borrow from linear logic: deconstructing a tensor gives both
elements but deconstructing a with product returns only one.

Γ ` e : τ1 ⊗ τ2 ∆, x :r τ1, y :r τ2 ` e′ : τ ′

∆+ rΓ ` let (x, y) = e in e′ : τ ′
Γ ` e : τ1 & τ2

Γ ` πi e : τi

This partly explains why the connectives’ distances involve addition and maximum. When
using a tensor product, both elements can affect how much the output can vary, so both
elements must be considered. (Note that Fuzz is an affine type system: we are free to
ignore one of the product’s components, and thus we can write projection functions out
of a tensor product.) When projecting out of a with product, only one of the elements
will affect the program’s output, so we only need to consider the component that yields
the maximum distance.

Fuzz uses the !s type for managing sensitivities. Intuitively, !sτ behaves like τ , but
with the distances scaled by s; when s = ∞, this means that different points are infinitely
apart. The introduction rule scales the sensitivities of variables in the environment. This
can be used in conjunction with the elimination rule to propagate the sensitivity out of
the type and into the environment.

Γ ` e : τ

sΓ ` !e : !sτ

Γ ` e : !sτ ∆, x :rs τ ` e′ : τ ′

∆+ rΓ ` let !x = e in e′ : τ ′

Finally, the rules for the linear implication ⊸ are similar to the ones from linear logic,
but adjusted to account for sensitivities.

Γ , x :1 τ ` e : σ

Γ ` λx.e : τ ⊸ σ

Γ ` e : τ ⊸ σ ∆ ` e′ : τ

Γ +∆ ` e e′ : σ

To introduce the linear implication ⊸, the bound variable needs to have sensitivity 1.
When eliminating ⊸, the environments need to be added. In categorical language, addi-
tion, which is also present in the metric for ⊗, is connected to the fact that there is an
adjunction between the functors X ⊗ (−) and X ⊸ (−).

6



2.4 Lp distances
The L1 and L∞ distances are instances of a more general family of Lp distances (for
p ∈ R≥1

∞ ).3 Given a sequence of distances x⃗ = (x1, . . . , xn) ∈ (R≥0
∞ )n, we first define the Lp

pseudonorm4 as follows:
||x⃗||p = (Σn

i=1x
p
i )

1/p.

This definition makes sense whenever the distances xi and p are finite. When p = ∞, we
define the right-hand side as the limit maxn

i=1 xi. When xi = ∞ for some i, we define the
right-hand side as ∞. We have the following classical properties:
Proposition 2.3 (Hölder inequality). For all p, q ≥ 1 such that 1

p + 1
q = 1, and for all x⃗,

y⃗ ∈ (R≥0
∞ )n, we have: Σn

i=1xiyi ≤ ||x⃗||p||y⃗||q.
For p = 2, q = 2, this is the Cauchy-Schwarz inequality: Σn

i=1xiyi ≤ ||x⃗||2||y⃗||2.
Proposition 2.4. For 1 ≤ p ≤ q we have, for x⃗ ∈ (R≥0

∞ )n:

||x⃗||q ≤ ||x⃗||p (6)
||x⃗||p ≤ n

1
p−

1
q ||x⃗||q (7)

||x⃗||2 ≤ ||x⃗||1 ≤
√
n ||x⃗||2 (8)

The Lp pseudonorms yield distances on tuples. More precisely, suppose that (Xi)1≤i≤n

are metric spaces. The following defines a metric on X = X1 × · · · ×Xn:
dp(x⃗, x⃗

′) = ||(dX1
(x1, x

′
1), . . . , dXn

(xn, x
′
n))||p

Proposition 2.5. For 1 ≤ p ≤ q we have, for x⃗, x⃗′ ∈ X1 × · · · ×Xn:

dq(x⃗, x⃗′) ≤ dp(x⃗, x⃗′) ≤ n
1
p−

1
q dq(x⃗, x⃗′) (9)

d2(x⃗, x⃗′) ≤ d1(x⃗, x⃗′) ≤
√
n d2(x⃗, x⃗′) (10)

3 Bunched Fuzz: Programming with Lp Distances
As we discussed earlier, the L1 distance is not the only distance on products with useful
applications. In the context of differential privacy, for example, the L2 distance is used to
measure the sensitivity of queries when employing the Gaussian mechanism, a method
for private data release that sanitizes data by adding Gaussian noise instead of Laplacian
noise.5

It is possible to extend a Fuzz-like analysis with L2 distances by adding primitive types
and combinators for vectors. This was done, for instance, in the Duet language [22],
which provides the Gaussian mechanism as one of the primitives for differential privacy.
Such an extension can help verify a wide class of algorithms that manipulate vectors in
a homogeneous fashion, but it makes it awkward to express programs that require finer
grained access to vectors.

To illustrate this point, suppose that we have a non-expansive function f : R2 → R,
where the domain carries the L2 metric. Consider the mapping

g(x, y) = f(2x, y) + f(2y, x).

3The Lp distances can be defined with p ≥ 0 but for simplicity of our treatment we will only consider p ≥ 1.
4“pseudo-” because it can be infinite.
5Technically, the Gaussian mechanism is used to achieve a relaxation of differential privacy known as ap-

proximate, or (ϵ, δ)-differential privacy. Though this notion cannot be analyzed directly by classical verification
techniques for differential privacy, it can be handled by recent extensions of Fuzz [3, 22].
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How would we analyze the sensitivity of g? We cannot translate such a program directly
into a system like Duet, since it does not allow us to manipulate L2 vectors at the level
of individual components. However, we could rewrite the definition of g to use matrix
operations, which could be easily incorporated in a variant of Duet. Specifically, consider
the following definition:

g(x⃗) = f

([
2 0

0 1

]
x⃗

)
+ f

([
0 2

1 0

]
x⃗

)
.

The L2 sensitivity of a linear transformation x⃗ 7→ Mx⃗ can be easily computed if we know
the coefficients of the matrix M . Note that

d(Mx⃗,My⃗) = ||Mx⃗−My⃗||2 = ||M(x⃗− y⃗)||2 =
||M(x⃗− y⃗)||2
||x⃗− y⃗||2

||x⃗− y⃗||2

≤
(
sup

z⃗

||Mz⃗||2
||z⃗||2

)
d(x⃗, y⃗).

The quantity supz⃗ ||Mz⃗||2/||z⃗||2, known as the operator norm of M , gives the precise sen-
sitivity of the above operation, and can be computed by standard algorithms from linear
algebra. In the case of g, both matrices have a norm of 2. This means that we can analyze
the sensitivity of g compositionally, as in Fuzz: addition is 1-sensitive in each variable, so
we just have to sum the sensitivities of x⃗ in each argument, yielding a combined sensi-
tivity of 4. Unfortunately, this method of combining the sensitivities of each argument
is too coarse when reasoning with Lp distances, which leads to an imprecise analysis. To
obtain a better bound, we can reason informally as follows. First, take

M =


2 0

0 1

0 2

1 0

 .

We can compute the operator norm of M directly:

||M || = sup
x,y

√
22x2 + y2 + 22y2 + x2√

x2 + y2
= sup

x,y

√
5(x2 + y2)√
x2 + y2

=
√
5,

which implies that M is a √
5-sensitive function of type R2 → R4 ∼= R2 × R2. Moreover,

thanks to Proposition 2.5, we can view addition (+) as a √
2-sensitive operator of type

R2 → R, since
dR(x1 + x2, y1 + y2) ≤ dR(x1 − y1) + dR(x2 − y2) = d1(x⃗, y⃗) ≤

√
2d2(x⃗, y⃗).

Thus, by rewriting the definition of g as
(+) ◦ (f × f) ◦M,

where f × f : R4 ∼= R2 ×R2 → R×R denotes the application of f in parallel, we can compute
the sensitivity of g by multiplying the sensitivity of each stage, as √

2×1×
√
5 =

√
10 ≈ 3.16,

which is strictly better than the previous bound.
Naturally, we could further extend Fuzz or Duet with primitives for internalizing this

reasoning, but it would be preferable to use the original definition of g and automate
the low-level reasoning about distances. In this section, we demonstrate how this can
be done via Bunched Fuzz, a language that refines Fuzz by incorporating more general
distances in its typing environments. Rather assuming that input distances are always
combined by addition, or the L1 distance, Bunched Fuzz allows them to be combined with
arbitrary Lp distances. This refinement allows us to analyze different components of a
vector as individual variables, but also to split the sensitivity of these variables while
accounting for their corresponding vector distances. In the remaining of this section, we
present the syntax and type system of Bunched Fuzz, highlighting the main differences
with respect to the original Fuzz design. Later, in Section 4, we will give a semantics to
this language in terms of metric spaces, following prior work [3].
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τ, σ, ρ ::= 1 | R | !sτ | ©P τ | ©Hτ | τ ⊸p σ | τ ⊗p σ | τ ⊕ σ (p ∈ R≥1
∞ , s ∈ R≥0

∞ )

e ::= x | r ∈ R | () | λx.e | e e | (e, e) | let (x, y) = e in e

| injie | (case e of x. e | y. e) | !e | let !x = e in e

|mlet x = e in e | return e | · · ·

Figure 1: Types and terms in Bunched Fuzz

Types and Terms Figure 1 presents the grammar of types and the main term formers of
Bunched Fuzz. They are similar to their Fuzz counterparts; in particular, there are types
for real numbers, products, sums, functions, and a unit type. The main novelty is in the
product type τ ⊗p σ, which combines the metrics of each component using the Lp distance
(cf. Section 2.4). The types τ ⊗1 σ and τ ⊗∞ σ subsume the types τ ⊗ σ and τ & σ in the
original Fuzz language. Note that there is no term constructor or destructor for the Fuzz
type &, since it is subsumed by ⊗∞. The type τ ⊸p σ represents non-expansive functions
endowed with a metric that is compatible with the Lp metric, in that currying works (cf.
Section 5). We will sometimes write ⊗ for ⊗1 and ⊸ for ⊸1.

Another novelty with respect to Fuzz is that there are two constructors for probabil-
ity distributions, ©P and ©H . The first one carries the original Fuzz privacy metric, while
the second one carries the Hellinger distance. As we will see shortly, the composition
principle for the Hellinger distance uses a contraction operator for the L2 distance, which
was not available in the original Fuzz design. Both distribution types feature term con-
structors mlet and return for sampling from a distribution and for injecting values into
distributions. To simplify the notation, we do not use separate versions of these term
formers for each type.

Bunches Before describing its type system, we need to talk about how typing environ-
ments are handled in Bunched Fuzz. In the spirit of bunched logics, environments are
bunches defined with the following grammar:

Γ,∆ ::= · | [x : τ ]s | Γ ,p ∆

The empty environment is denoted as ·. The form [x : τ ]s states that the variable x has
type τ and sensitivity s. The form Γ ,p ∆ denotes the concatenation of Γ and ∆, which is
only defined when the two bind disjoint sets of variables. As we will see in Section 4,
bunches will be interpreted as metric spaces, and the p index denote which Lp metric we
will use to combine the metrics of Γ and ∆.

The type system features several operations and relations on bunches, which are
summarized in Figure 2. We write Γ↭ Γ′ to indicate that we can obtain Γ′ by rearranging
commas up to associativity and commutativity, and by treating the empty environment
as an identity element; Figure 2 has a precise definition. Observe that associativity only
holds for equal values of p. This operation will be used to state a permutation rule for
the type system of Bunched Fuzz.

Like in Fuzz, environments have a scaling operation sΓ which scales all sensitivities in
the bunch by s. For example,

s([x : τ ]r1 ,p [y : σ]r2) = ([x : τ ]s·r1 ,p [y : σ]s·r2).

The exact definition of scaling in such graded languages is subtle, since minor variations
can quickly lead to unsoundness. The definition we are using (∞ · 0 = 0 · ∞ = ∞), which
goes back to prior work [3], is sound, but imprecise, since it leads to too many variables
being marked as ∞-sensitive. It would also be possible to have a more precise variant
that uses a non-commutative definition of multiplication on distances [4], but we keep
the current formulation for simplicity. (For a more thorough discussion on these choices
and their tradeoffs, see Appendix B.)
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vars(·) = []

vars([x : τ ]s) = [x]

vars((Γ1,p Γ2)) = vars(Γ1) ++ vars(Γ2)

· ≈ ·
[x : τ ]s ≈ [y : σ]r if τ = σ

Γ1 ,p Γ2 ≈ ∆1,q ∆2 if p = q ∧ Γi ≈ ∆i

Γ↭ ∆ if Γ = ∆

Γ↭ ·,p ∆ if Γ↭ ∆

Γ↭ ∆,p · if Γ↭ ∆

Γ1,p Γ2↭ ∆1,p ∆2 if Γi↭ ∆i

Γ1,p Γ2↭ ∆2,p ∆1 if Γi↭ ∆i

Γ1,p (Γ2,p Γ3)↭ (∆1,p ∆2),p ∆3 if Γi↭ ∆i

Γ2↭ Γ1 if Γ1↭ Γ2

s · = ·
s [τ ]r = [τ ]s·r

s (Γ ,p ∆) = sΓ ,p s∆

c(p, q) =

{
1 if p = ∞
2|

1
q−

1
p | otherwise

Contr(p, ·, ·) = ·
Contr(p, [x : τ ]s, [y : τ ]r) = [x : τ ] p

√
sp+rp

Contr(p, (Γ1,q Γ2), (∆1,q ∆2)) = c(p, q)(Contr(p,Γ1,∆1),q Contr(p,Γ2,∆2)).

Figure 2: Bunch Operations

In the original Fuzz type system, rules with several premises usually have their envi-
ronments combined by adding sensitivities pointwise, which corresponds to a use of the L1

metric. In Bunched Fuzz, we have instead a family of contraction operations Contr(p,Γ,∆)
for combining environments, one for each Lp metric. Contraction only makes sense if Γ
and ∆ differ only in sensitivities and variable names, but have the same structure oth-
erwise. We write this relation as Γ ≈ ∆. When contracting two leaves, sensitivities are
combined using the Lp norm, while keeping variable names from the left bunch.

Unlike Fuzz, where contraction is implicit in rules with multiple premises, Bunched Fuzz
has a separate, explicit contraction typing rule. The rule will be stated using the vars
function, which lists all variables in a bunch.

Type System Our type system is similar to the one of Fuzz, but adapted to use bunched
environments. The typing rules are displayed on Figure 3. For example, in the ⊗I rule,
notice that the p on the tensor type is carried over to the bunch in the resulting environ-
ment. Similarly, in the ⊸I rule, the value of p that annotates the bunch in the premise is
carried over to the ⊸p in the conclusion.

Like in Fuzz, the !E rule propagates the scaling factor, but using the bunch structure.
Rather than adding the two environments, we splice one into the other: the notation Γ(∆)
denotes a compound bunch where we plug in the bunch ∆ into another bunch Γ(⋆) that
has a single, distinguished hole ⋆. As we mentioned earlier, Bunched Fuzz has an explicit
typing rule for contraction, whereas contraction in Fuzz is implicit in rules with multiple
premises. Note also that we have unrestricted weakening. Finally, we have the rules for
typing the return and bind primitives of the probabilistic types ©H and ©P . Those for
©P are adapted from Fuzz, by using contraction instead of adding up the environments.
The ones for ©H are similar, but use L2 contraction instead, since that is the metric that
enables composition for the Hellinger distance.

Let us now explain in which sense ⊗∞ corresponds to the & connective of Fuzz. We
will need the following lemma:
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s ≥ 1

[x : τ ]s ` x : τ
Axiom

· ` r : R
RI

· ` () : 1
1I

Γ ,p [x : τ ]1 ` e : σ

Γ ` λx.e : τ ⊸p σ
⊸I Γ ` f : τ ⊸p σ ∆ ` e : τ

Γ,p ∆ ` f e : σ
⊸E

Γ ` e1 : τ ∆ ` e2 : σ

Γ ,p ∆ ` (e1, e2) : τ ⊗p σ
⊗I ∆ ` e1 : τ ⊗p σ Γ([x : τ ]s ,p [y : σ]s) ` e2 : ρ

Γ(s∆) ` let (x, y) = e1 in e2 : ρ
⊗E

Γ ` e : τ

Γ ` inj1e : τ ⊕ σ
⊕1I

Γ ` e : σ

Γ ` inj2e : τ ⊕ σ
⊕2I

Γ ` e1 : τ ⊕ σ ∆([x : τ ]s) ` e2 : ρ ∆([y : σ]s) ` e3 : ρ

∆(sΓ) ` case e1 of x. e2 | y. e3 : ρ
⊕E

Γ ` e : τ

sΓ ` !e : !sτ
!I Γ ` e1 : !rτ ∆([x : τ ]rs) ` e2 : σ

∆(sΓ) ` let !x = e1 in e2 : σ
!E Γ(∆ ,p ∆

′) ` e : τ ∆ ≈ ∆′

Γ(Contr(p,∆,∆′)) ` e[vars(∆′)/vars(∆)] : τ
Contr

Γ(·) ` e : τ

Γ(∆) ` e : τ
Weak Γ ` e : τ Γ↭ Γ′

Γ′ ` e : τ
Exch

Γ ≈ ∆
Γ ` e1 : ©P τ ∆,p [x : τ ]s ` e2 : ©Pσ

Contr(1,Γ,∆) `mlet x = e1 in e2 : ©Pσ
Bind-P Γ ` e : τ

∞Γ ` return e : ©P τ
Return-P

Γ ≈ ∆
Γ ` e1 : ©Hτ ∆,p [x : τ ]s ` e2 : ©Hσ

Contr(2,Γ,∆) `mlet x = e1 in e2 : ©Hσ
Bind-H Γ ` e : τ

∞Γ ` return e : ©Hτ
Return-H

Figure 3: Bunched Fuzz typing rules
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Lemma 3.1 (Renaming). Assume that there is a type derivation of Γ ` e : τ and that Γ ≈ Γ′.
Then there exists a derivation of Γ′ ` e[vars(Γ′)/vars(Γ)] : τ .

Now, the & connective in Fuzz supports two operations, projections and pairing. The
connective ⊗∞ of Bunched Fuzz also supports these operations, but as derived forms.
First, projections can be encoded by defining πi(e) for i = 1, 2 as let (x1, x2) = e in xi. Second,
for pairing assume we have two derivations of Γ ` ei : σi for i = 1, 2, and let Γ′ be an
environment obtained from Γ by renaming all variables to fresh ones. Then we have
Γ ≈ Γ′ and thus

Γ ` e1 : σ1

Γ ` e2 : σ2 Γ ≈ Γ′

Γ′ ` e2[vars(Γ
′)/vars(Γ)] : σ2

Lemma 3.1

Γ ,∞ Γ′ ` (e1, e2[vars(Γ
′)/vars(Γ)]) : σ1 ⊗∞ σ2

⊗I

Contr(∞,Γ,Γ′) ` (e1, e2) : σ1 ⊗∞ σ2

Contr

Note that we have defined ∞
√
x∞ + y∞ = max(x, y) by taking the limit of p

√
xp + yp when p

goes to infinity, and thus we have Contr(∞,Γ,Γ′) = Γ. Therefore the pairing rule of & is
derivable for ⊗∞.

4 Semantics
Having defined the syntax of Bunched Fuzz and its type system, we are ready to present
its semantics. We opt for a denotational formulation, where types τ and bunches Γ are
interpreted as metric spaces JτK and JΓK, and a derivation π of Γ ` e : τ is interpreted
as a non-expansive function JπK : JΓK → JτK. For space reasons, we do not provide an
operational semantics for the language, but we foresee no major difficulties in doing so,
since the term language is mostly inherited from Fuzz, which does have a denotational
semantics proved sound with respect to an operational semantics [4].

Types Each type τ is interpreted as a metric space JτK in a compositional fashion, by
mapping each type constructor to the corresponding operation on metric spaces defined
in Figure 4. We now explain these definitions.

The operations of the first four lines of Figure 4 come from prior work on Fuzz [4, 3].
The definition of ⊗p uses as carrier set the cartesian product, just as ⊗ in previous works,
but endows it with the Lp distance, defined in Section 2.4. In the particular case of p = 1,
⊗1 is the same as ⊗.

As for ⊸p, we want to define it in such a way that currying and uncurrying work with
respect to ⊗p, which will allow us to justify the introduction and elimination forms for
that connective. For that we first choose as carrier set the set A⊸ B of non-expansive
functions from A to B. This set carries the metric

dA⊸pB(f, g)

= inf{r ∈ R≥0
∞ | ∀x, y ∈ A, dB(f(x), g(y)) ≤ p

√
rp + dA(x, y)p}

(11)

This metric is dictated by the type of the application operator in the Lp norm: (A ⊸p

B) ⊗p A ⊸ B. Intuitively, if f and g are at distance r, and we want application to be
non-expansive, we need to satisfy

dB(f(x), g(y)) ≤ p
√

rp + dA(x, y)p

for every x, y ∈ A. The above definition says that we pick the distance to be the smallest
possible r that makes this work. Note that this choice is forced upon us: in category-
theoretic jargon, the operations of currying and uncurrying, which are intimately tied
to the application operator, correspond to an adjunction between two functors, which
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Space X |X| dX(x, y)

1 {∗} 0
R R |x− y|

s · dA(x, y) if s 6= ∞
∞ if s = ∞, x 6= y ∈ A

0 if s = ∞, x = y ∈ A

!sA |A|


dA(x, y) if x, y ∈ A

dB(x, y) if x, y ∈ B

else ∞
A⊕B |A|+ |B|

A⊗p B |A| × |B| p
√
dA(π1(x), π1(y))p + dB(π2(x), π2(y))p

A⊸p B A⊸ B cf. Equation (11)
©PA DA MDA(x, y); cf. Equation (2)
©HA DA HDA(x, y); cf. Equation (12)

Figure 4: Operations on metric spaces for interpreting types

implies that any other metric space that yields a similar adjunction with respect to ⊗p

must be isomorphic to ⊸p. In particular, this implies that its metric will be the same as
the one of ⊸p.

For ©PA and ©HA the carrier set is the set DA of discrete distributions over A. As to
the metric on the carrier set, the interpretation of ©P uses the max divergence, used
in the definition of differential privacy (see Sect. 2.2). The interpretation of ©H uses
instead the Hellinger distance (see e.g. [3]):

HDA(µ, ν) ≜
√

1

2

∑
x∈A

|
√
µ(x)−

√
ν(x)|2 (12)

Bunches The interpretation of bunches is similar to that of types. Variables correspond
to scaled metric spaces, whereas ,p corresponds to ⊗p:J·K = 1 J[x : τ ]sK = !sJτK JΓ1 ,p Γ2K = JΓ1K ⊗p JΓ2K.

One complication compared to prior designs is the use of an explicit exchange rule,
which is required to handle the richer structure of contexts. Semantically, each use of
exchange induces an isomorphism of metric spaces:
Theorem 4.1. Each derivation of Γ↭ ∆ corresponds to an isomorphism of metric spacesJΓK ∼= J∆K.

Before stating the interpretation of typing derivations, we give an overview of impor-
tant properties of the above constructions that will help us prove the soundness of the
interpretation.

Scaling Much like in prior work [4, 3], we can check the following equations:
Proposition 4.2.

!s1 !s2A = !s1·s2A !s(A⊕B) = !sA⊕ !sB !s(A⊗p B) = !sA⊗p !sB.

Moreover, an s-sensitive function from A to B is the same thing as a non-expansive
function of type !sA⊸ B.
Proposition 4.3. For every bunch Γ, we have JsΓK = !sJΓK.
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Tensors The properties on Lp distances allow us to relate product types with different
values of p.
Proposition 4.4. [Subtyping of tensors]
1. Let A, B be two metric spaces and p, q ∈ R≥1

∞ with p ≤ q. Then the identity map on
pairs belongs to the two following spaces:

A⊗p B⊸ A⊗q B !21/p−1/q (A⊗q B)⊸ A⊗p B.

2. In particular, when p = 1 and q = 2, the identity map belongs to:
A⊗1 B⊸ A⊗2 B !√2(A⊗2 B)⊸ A⊗1 B.

Proof. For (1), the fact that the identity belongs to the first space follows from the fact
that dq(x, y) ≤ dp(x, y), by Proposition 2.5 (Equation (9)). The second claim is derived from
Proposition 2.5 (Equation (9)) in the case n = 2.
Remark. Proposition 4.4 allows us to relate different spaces of functions with multiple
arguments. For example,

(A⊗2 B⊸ C) ⊆ (A⊗1 B⊸ C)

(A⊗1 B⊸ C) ⊆ (!√2(A⊗2 B)⊸ C).

Bunched Fuzz does not currently exploit these inclusions in any significant way, but we
could envision extending the system with a notion of subtyping to further simplify the
use of multiple product metrics in a single program.

We also have the following result, which is instrumental to prove the soundness of
the contraction rule.
Proposition 4.5. Let X,Y, Z,W be metric spaces, and p, q ∈ R≥1

∞ with p 6= ∞. The canonical
isomorphism of sets

(X × Y )× (Z ×W ) ∼= (X × Z)× (Y ×W ),

which swaps the second and third components, is a non-expansive function of type
!c(p,q)((X ⊗q Y )⊗p (Z ⊗q W )) → (X ⊗p Z)⊗q (Y ⊗p W ),

where c(p, q) is defined as in Figure 2.
Proof. First, suppose that p ≤ q. Then we can write the isomorphism as a composite of
the following non-expansive functions:

!c(p,q)((X ⊗q Y )⊗p (Z ⊗q W )

→ !c(p,q)((X ⊗q Y )⊗q (Z ⊗q W )) Proposition 4.4
∼= !c(p,q)((X ⊗q Z)⊗q (Y ⊗q W )) assoc., comm. of ⊗q

= !c(p,q)(X ⊗q Z)⊗q !c(p,q)(Y ⊗q W ) Proposition 4.2
= (X ⊗p Z)⊗q (Y ⊗p W ) Proposition 4.4.

Otherwise, p > q, and we reason as follows.
!c(p,q)((X ⊗q Y )⊗p (Z ⊗q W )

→ !c(p,q)((X ⊗p Y )⊗q (Z ⊗p W )) Proposition 4.4
∼= !c(p,q)((X ⊗p Z)⊗p (Y ⊗p W )) assoc., comm. of ⊗p

= (X ⊗p Z)⊗q (Y ⊗p W ) Proposition 4.4.

One can then prove the following property:
Proposition 4.6. Suppose that we have two bunches Γ ≈ ∆. The carrier sets of JΓK and J∆K
are the same. Moreover, for any p, the diagonal function δ(x) = (x, x) is a non-expansive
function of type JContr(p,Γ,∆)K → JΓK ⊗p J∆K.
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Function Types The metric on ⊸p can be justified by the following result:
Proposition 4.7. For every metric space X and every p ∈ R≥1

∞ , there is an adjunction of
type (−) ⊗p X a X ⊸p (−) in Met given by currying and uncurrying. (Both constructions
on metric spaces are extended to endofunctors on Met in the obvious way.)

Because right adjoints are unique up to isomorphism, this definition is a direct gener-
alization of the metric on functions used in Fuzz [25, 4, 3], which corresponds to ⊸1.
Theorem 4.8. Suppose that A and B are proper metric spaces, and let f, g : A → B be
non-expansive. Then dA⊸1B(f, g) = supx dB(f(x), g(x)).

We conclude with another subtyping result involving function spaces.
Theorem 4.9. For all non-expansive functions f, g ∈ A → B and p ≥ 1, we have dA⊸1B(f, g) ≤
dA⊸pB(f, g). In particular, the identity function is a non-expansive function of type (A⊸p

B) → (A⊸1 B).

Probability Distributions Prior work [3] proves that the return and bind operations on
probability distributions can be seen as non-expansive functions:

η : !∞A → ©PA

(−)†(−) : (!∞A⊸1 ©PB)⊗1 ©PA → ©PB.

These properties ensure the soundness of the typing rules for ©P in Fuzz, and also in
Bunched Fuzz. For ©H , we can use the following composition principle.
Theorem 4.10. The following types are sound for the monadic operations on distribu-
tions, seen as non-expansive operations, for any p ≥ 1:

η : !∞A → ©HA

(−)†(−) : (!∞A⊸p ©HB)⊗2 ©HA → ©HB.

Derivations Finally, a derivation tree builds a function from the context’s space to the
subject’s space. In the following definition, we use the metavariables γ and δ to denote
variable assignments—that is, mappings from the variables of environments Γ and ∆ to
elements of the corresponding metric spaces. We use γ(δ) to represent an assignment
in JΓ(∆)K that is decomposed into two assignments γ(⋆) and δ corresponding to the Γ(⋆)
and ∆ portions. Finally, we use the λ-calculus notation f x to denote a function f being
applied to the value x.
Definition 4.11. Given a derivation π proving Γ ` e : τ , its interpretation JπK ∈ JΓK → JτK is
given by structural induction on π as follows:JAxiomK ≜ λx. x JRIK ≜ λ(). r ∈ RJ⊸ I πK ≜ λγ. λx. JπK (γ, x) J⊸ E π1 π2K ≜ λ(γ, δ). Jπ2K γ (Jπ1K δ)J1IK ≜ λ(). () J⊗I π1 π2K ≜ λ(γ, δ). (Jπ1K γ), (Jπ2K δ)J⊗E π1 π2K ≜ λγ(δ). Jπ2K γ(Jπ1Kδ)J⊕iI πK ≜ λγ. injiJπK γ J⊕E π1 π2K ≜ λδ(γ). [Jπ2K, Jπ3K](δ(Jπ1Kγ))J!I πK ≜ JπK J!E π1 π2K ≜ λ δ(γ). Jπ2K δ(Jπ1K γ)JContr πK ≜ λγ(δ). JπK γ(δ, δ) JWeak πK ≜ λγ(δ). JπK γ( () )JExch πK ≜ λγ′.JπKϕγ′/γ(γ

′) JBind-P π1 π2K ≜ λγ′. (Jπ2Kγ′)
†
(Jπ1Kγ′)JReturn-P πK ≜ λγ. η(JπK γ)

where in JExch πK, the map ϕΓ′/Γ is the isomorphism defined by Theorem 4.1. and for
the two last cases see definitions in equations (3) and (4) (Bind-H and Return-H are defined
in the same way).
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Theorem 4.12 (Soundness). Given a derivation π proving Γ ` e : τ , then JπK is a non-
expansive function from the space JΓK to the space JτK.

5 Examples
We now look at examples of programs that illustrate the use of Lp metrics.

Currying and Uncurrying Let us illustrate the use of higher-order functions with combi-
nators for currying and uncurrying.

curry : ((τ ⊗p σ)⊸p ρ)⊸ (τ ⊸p σ⊸p ρ)

curry f x y = f(x, y)

uncurry : (τ ⊸p σ⊸p ρ)⊸ ((τ ⊗p σ)⊸p ρ).

uncurry f z = let (x, y) = z in f x y

Note that the indices on ⊗ and ⊸ need to be the same. The reason can be traced back
to the ⊸ E rule (cf. Figure 3), which uses the ,p connective to eliminate ⊸p (cf. Figure 6
in the Appendix for a detailed derivation). If the indices do not agree, currying is not
possible; in other words, we cannot in general soundly curry a function of type τ ⊗p σ⊸q ρ
to obtain something of type τ ⊸p σ⊸q ρ. However, if q ≤ p, note that it would be possible
to soundly view τ ⊗q σ as a subtype of τ ⊗p σ, thanks to Proposition 4.4. In this case, we
could then convert from τ ⊗p σ ⊸q ρ to τ ⊗q σ ⊸q ρ (note the variance), and then curry to
obtain a function of type τ ⊸q σ⊸q ρ.

Precise sensitivity for functions with multiple arguments Another useful feature of
Bunched Fuzz is that its contraction rule allows us to split sensitivities more accurately
than if we used the contraction rule that is derivable in the original Fuzz. Concretely,
suppose that we have a program λp.let (x, y) = p in f(x, y) + g(x, y), where f and g have
types f : (!2R)⊗2 R⊸ R and g : R⊗2 (!2R)⊸ R, and where we have elided the wrapping and
unwrapping of ! types, for simplicity.

Let us sketch how this program is typed in Bunched Fuzz. Addition belongs to R⊗1R⊸
R, so by Proposition 4.4 it can also be given the type !√2(R⊗2 R)⊸ R. Thus, we can build
the following derivation for the body of the program:

Contr
Γ ` f(x1, y1) + g(x2, y2) : R

[x : R]√10 ,2 [y : R]√10 ` f(x, y) + g(x, y) : R
==========================================

where Γ = ([x1 : R]2√2,2 [y1 : R]√2),2 ([x2 : R]√2,2 [y2 : R]2√2), and where we used contraction
twice to merge the xs and ys. Note that ||(2

√
2,
√
2)||2 =

√
8 + 2 =

√
10, which is why the final

sensitivities have this form. By contrast, consider how we might attempt to type this
program directly in the original Fuzz. Let us assume that we are working in an extension
of Fuzz with types for expressing the domains of f and g, similarly to the L2 vector types
of Duet [22]. Moreover, let us assume that we have coercion functions that allow us to
cast from (!2R) ⊗2 (!2R) to (!2R) ⊗2 R and R ⊗2 (!2R). If we have a pair p :!2((!2R) ⊗2 (!2R)),
we can split its sensitivity to call f and g and then combine their results with addition.
However, this type is equivalent to !4(R⊗2 R), which means that the program was given a
worse sensitivity (since √

10 < 4). Of course, it would also have been possible to extend
Fuzz with a series of primitives that implement precisely the management of sensitivities
performed by bunches. However, here this low-level reasoning is handled directly by the
type system.
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Programming with matrices The Duet language [22] provides several matrix types with
the L1, L2, or L∞ metrics, along with primitive functions for manipulating them. In Bunched
Fuzz, these types can be defined directly as follows: Mp[m,n] = ⊗m

1 ⊗n
p R. Following Duet,

we use the L1 distance to combine the rows and the Lp distance to combine the columns.
One advantage of having types for matrices defined in terms of more basic constructs
is that we can program functions for manipulating them directly, without resorting to
separate primitives. For example, we can define the following terms in the language:

addrow : Mp[1, n]⊗1 Mp[m,n]⊸Mp[m+ 1, n]

addcolumn : M1[1,m]⊗1 M1[m,n]⊸M1[m,n+ 1]

addition : M1[m,n]⊗1 M1[m,n]⊸M1[m,n].

The first program, addrow, appends a vector, represented as a 1 × n matrix, to the first
row of a m× n matrix. The second program, addcolumn, is similar, but appends the vector
as a column rather than a row. Because of that, it is restricted to L1 matrices. Finally,
the last program, addition, adds the elements of two matrices pointwise.

Vector addition over sets Let us now show an example of a Fuzz term for which using
Lp metrics allows to obtain a finer sensitivity analysis. We consider sets of vectors
in Rd and the function vectorSum which, given such a set, returns the vectorial sum
of its elements. In Fuzz, this function can be defined via a summation primitive sum :
!∞(!∞τ ⊸ R)⊸ set τ ⊸ R, which adds up the results of applying a function to each element
of a set [25]. The definition is:

vectorSum : !d set(⊗d
1R)⊸1 ⊗d

1R
vectorSum s = (sum π1 s, . . . , sum πd s).

Here, πi : ⊗d
1R ⊸ R denotes the i-th projection, which can be defined by destructing

a product. Set types in Fuzz are equipped with the Hamming metric [25], where the
distance between two sets is the number of elements by which they differ. Note that,
to ensure that sum has bounded sensitivity, we need to clip the results of its function
argument to the interval [−1, 1]. Fuzz infers a sensitivity of d for this function because its
argument is used with sensitivity 1 in each component of the tuple. In Bunched Fuzz, we
can define the same function as above, but we also have the option of using a different
Lp distance to define vectorSum, which leads to the type !d1/p set(⊗d

pR) ⊸ ⊗d
pR, with a

sensitivity of d1/p. For the sake of readability, we’ll show how this term is typed in the
case d = 2. By typing each term (sum πi zi) and applying (⊗I) we get:

[z1 : set(R⊗p R)]1 ,p [z2 : set(R⊗p R)]1 ` (sum π1 z1, sum π2 z2) : R⊗p R.

By applying contraction we get: [z : set(R⊗pR)]21/p ` (sum π1 z, sum π2 z) : R⊗pR. The claimed
type is finally obtained by (!E) and (⊸ I).

Computing distances Suppose that the type X denotes a proper metric space (that is,
where the triangle inequality holds). Then we can incorporate its distance function in
Bunched Fuzz with the type X ⊗1 X ⊸ R. Indeed, let x, x′, y and y′ be arbitrary elements
of X. Then

dX(x, y)− dX(x′, y′) ≤ dX(x, x′) + dX(x′, y′) + dX(y′, y)− dX(x′, y′)

= dX(x, x′) + dX(y, y′) = d1((x, y), (x
′, y′)).

By symmetry, we also know that dX(x′, y′)−dX(x, y) ≤ d1((x, y), (x
′, y′)). Combined, these two

facts show
dR(dX(x, y), dX(x′, y′)) = |dX(x, y)− dX(x′, y′)| ≤ d1((x, y), (x

′, y′)),

which proves that dX is indeed a non-expansive function.
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Calibrating noise to Lpdistance Hardt and Talwar [18] have proposed a generalization of
the Laplace mechanism, called the K-norm mechanism, to create a differentially private
variant of a database query f : db → Rd. The difference is that the amount of noise added
is calibrated to the sensitivity of f measured with the K norm, as opposed to the L1

distance used in the original Laplace mechanism. When K corresponds to the Lp norm,
we will call this the Lp-mechanism, following Awan and Slavkovich [1].
Definition 5.1. Given f : db → Rd with Lp sensitivity s and ϵ > 0, the Lp-mechanism is a
mechanism that, given a database D ∈ db, returns a probability distribution over y ∈ Rd

with density given by:
exp(−ϵ||f(D)−y||p

2s )∫ exp(−ϵ||f(D)−y||p
2s )dy

This mechanism returns with high probability (which depends on ϵ and on the sensitivity
s) a vector y ∈ Rd which is close to f(D) in Lp distance. Such a mechanism can be easily
integrated in Bunched Fuzz through a primitive:

LpMech : !∞(!sdB⊸ ⊗d
pR)⊸ !ϵdB⊸©P (⊗d

pR)

(Strictly speaking, we would need some discretized version of the above distribution
to incorporate the mechanism in Bunched Fuzz, but we’ll ignore this issue in what fol-
lows.) The fact that LpMech satisfies ϵ-differential privacy follows from the fact that this
mechanism is an instance of the exponential mechanism [20], a basic building block of
differential privacy. It is based on a scoring function assigning a score to every pair
consisting of a database and a potential output, and it attempts to return an output with
approximately maximal score, given the input database. As shown by Gaboardi et al. [14],
the exponential mechanism can be added as a primitive to Fuzz with type:

expmech : !∞ set(O)⊸ !∞(!∞O⊸!sdB⊸ R)⊸!ϵdB⊸©PO,

where O is the type of outputs. The function LpMech is an instance of the exponential
mechanism where O is ⊗d

pR and the score is λyλD.||f(D)− y||p.
To define the Lp mechanism with this recipe, we need to reason about the sensitivity

of this scoring function. In Fuzz, this would not be possible, since the language does not
support reasoning about the sensitivity of f measured in the Lp distance. In Bunched
Fuzz, however, this can be done easily. Below, we will see an example (Gradient descent)
of how the Lp mechanism can lead to a finer privacy guarantee.

Gradient descent Let us now give an example where we use the Lp mechanism. An
example of differentially private gradient descent example with linear model in Fuzz was
given in [27] (see Sect. 4.1, 4.2 and Fig. 6 p. 16, Fig. 8 p.19). This algorithm proceeds by
iteration. Actually it was given for an extended language called Adaptative Fuzz, but the
code already gives an algorithm in (plain) Fuzz. We refer the reader to this reference for
the description of all functions, and here we will only describe how one can adapt the
algorithm to Bunched Fuzz.

Given a set of n records xi ∈ Rd, each with a label yi ∈ R, the goal is to find a parameter
vector θ ∈ Rd that minimizes the difference between the labels and their estimates,
where the estimate of a label yi is the inner product 〈xi, θ〉. That is, the goal is to
minimize the loss function L(θ, (x, y)) = 1

n · Σn
i=1(〈xi, θ〉 − yi)

2. The algorithm starts with an
initial parameter vector (0, . . . , 0) and it iteratively produces successive θ vectors until a
termination condition is reached.

The Fuzz program uses the data-type bag τ representing bags or multisets over τ . A
bagmap primitive is given for it. The type I is the unit interval [0, 1]. The main function is
called updateParameter and updates one component of the model θ; it is computed in the
following way:
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• with the function calcGrad : db → R, compute a component (∇L(θ, (x, y)))j of the Rd

vector ∇L(θ, (x, y)) 6.
• then Laplacian noise is postcomposed with calcGrad in the updateParameter function.
This uses a privacy budget of 2ϵ. It has to be done for each one of the d components
of ∇L(θ, (x, y)), thus on the whole, for one step, a privacy budget of 2dϵ.

• The iterative procedure of gradient descent is given by the function gradient in Fig. 8
p. 19 of [27]. We forget here about the adaptative aspect and just consider iteration
with a given number n of steps. In this case by applying n times updateParameter one
gets a privacy budget of 2dnϵ.

We modify the program as follows to check it in Bunched Fuzz and use the Lp-
mechanism. Instead of computing over R we want to compute over ⊗d

pR for a given
p ≥ 1, so Rd equipped with Lp distance. The records xi are in ⊗d

pI and the labels yi in I.
The database type is dB = bag (I ⊗p (⊗d

pI)). The distance between two bags in dB is the
number of elements by which they differ.

We assume a primitive bagV ectorSum with type !d1/pbag (⊗d
pI)⊸ ⊗d

pR (it could be defined
as the vectorSum defined above for sets, using a sum primitive for bags). Given a bag
m, (bagV ectorSum m) returns the vectorial sum of all elements of m. We can check that
the sensitivity of bagV ectorSum is indeed d1/p because given two bags m and m′ that are
at distance 1, if we denote by u the vector by which they differ, we have:

d(⊗d
pR)(bagV ectorSum(m), bagV ectorSum(m′)) = ||u||p ≤ (Σd

j=11)
1/p = d1/p

By adapting the calcGrad Fuzz term of [27] using bagV ectorSum we obtain a term V ectcalcGrad
with the Bunched Fuzz type !∞⊗d

pR⊸!d1/pdb⊸ ⊗d
pR. Given a vector θ and a database (y, x),

V ectcalcGrad computes the updated vector θ′. Finally we define the term updateV ector
by adding noise to V ectcalcGrad using the the Lp-mechanism. Recall the type of LpMech:
!∞(!sdb⊸ ⊗d

pR)⊸!ϵdb⊸©P (⊗d
pR). We define updateV ector and obtain its type as follows:

updateV ector = λθ.(LpMech (V ectcalcGrad θ)) : !∞ ⊗d
p R⊸!ϵdb⊸©P (⊗d

pR)

By iterating updateV ector n times one obtains a privacy budget of nϵ.

6 Implementation
To experiment with the Bunched Fuzz design, we implemented a prototype for a fragment
of the system based on DFuzz [14, 2].7 The type-checker generates a set of numeric
constraints that serve as verification conditions to guarantee a valid typing. The im-
plementation required adapting some of the current rules to an algorithmic formulation
(found in Figure 7). In addition to the modifications introduced in the DFuzz type checker
compared to its original version [14, 2], we also made the following changes and simpli-
fications:

• We did not include explicit contraction and weakening rules. Instead, the rules are
combined with those for checking other syntactic constructs. To do away with an
explicit contraction rule, in rules that have multiple antecedents, such as the ⊗I rule,
we used the Contr operator to combine the antecedents’ environments, rather than
using the p-concatenation operator for bunches.

• We did not include the rules for checking probabilistic programs with the Hellinger
distance.

6Actually calcGrad computes (∇L(θ, (x, y)))j up to a multiplicative constant, 2/n, which is mutliplied afterwards
in the updateParameter function.

7https://github.com/junewunder/bunched-fuzz
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• Bound variables are always added at the top of the current environment, as in the
⊸I rule of the original rules; it is not possible to introduce new variables arbitrarily
deep in the environment.

While, strictly speaking, the resulting system is incomplete with respect to the rules
presented here, it is powerful enough to check the K-means example of Appendix B.
On the other hand, because our implementation is based on the one of DFuzz, which
features dependent types, we allow functions that are polymorphic on types, sizes and
p parameters, which allows us to infer sensitivity information that depends on run-time
sizes.

7 Related Work
Bunched Fuzz is inspired by BI, the logic of bunched implications [24], which has two
connectives for combining contexts. Categorically, one of these connectives corresponds
to a Cartesian product, whereas the other corresponds to a monoidal, or tensor product.
While related to linear logic, the presence of the two context connectives allows BI to
derive some properties that are not valid in linear logic. For example, the cartesian
product does not distribute over sums in linear logic but it does distribute over sums in
BI.

We have shown how the rules for such type systems are reminiscent of the ones
used in type systems for the calcuclus of bunched implications [23], and for reasoning
about categorical grammars [21]. Specifically, O’Hearn introduces a type system with two
products and two arrows [23]. Typing environments are bunches of variable assignments
with two constructors, corresponding to the two products. Our work can be seen as a
generalization of O’Hearn’s work to handle multiple products and to reason about program
sensitivity.

Moot and Retoré [21, Chapter 5] introduce the multimodal Lambek calculus, which
extends the non-associative Lambek calculus, a classical tool for describing categorical
grammars. This generalization uses an indexed family of connectives and trees to rep-
resent environments. The main differences with our work are: our indexed products are
associative and commutative, while theirs are not; our type system is affine; our type
system includes a monad for probabilities which does not have a correspondent construc-
tion in their logic; our type system also possesses the graded comonad !s corresponding
to the ! modality of linear logic, the interaction between this comonad and the bunches
is non-trivial and it requires us to explicitly define a notion of contraction. Besides the
fact that the main properties we study, metric interpretation and program sensitivity,
are very different from the ones studied by the above authors, there are some striking
similarities between the two systems.

A recent work by Bao et al. [5] introduced a novel bunched logic with indexed products
and magic wands with a preorder between the indices. This logic is used as the assertion
logic of a separation logic introduced to reason about negative dependence between
random variables. The connectives studied in this work share some similarities with the
ones we study here and it would be interesting to investigate further the similarities,
especially from a model-theoretic perspective.

Because contexts in the original Fuzz type system are biased towards the L1 distance,
it is not obvious how Fuzz could express the composition principles of the Hellinger
distance. Recent work showed how this could be amended via a path construction that
recasts relational program properties as sensitivity properties [3]. Roughly speaking,
instead of working directly with the Hellinger distance dH , the authors consider a family
of relations Rα given by

Rα = {(µ1, µ2) | dH(µ1, µ2) ≤ α}.

Such a relation induces another metric on distributions, dα,H , where the distance between
two distributions is the length of the shortest path connecting them in the graph corre-
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sponding to Rα. This allows them to express the composition principles of the Hellinger
distance directly in the Fuzz type system, albeit at a cost: the type constructor for prob-
ability distributions is graded by the distance bound α. Thus, the sensitivity information
of a randomized algorithm with respect to the Hellinger distance must also be encoded in
the codomain of the function, as opposed to using just its domain, as done for the original
privacy metric of Fuzz. By contrast, Bunched Fuzz does not require the grading α because
it can express the composition principle of the Hellinger distance directly, thanks to the
use of the L2 distance on bunches.

Duet [22] can be seen as an extension of Fuzz to deal with more general privacy
distances. It consists of a two-layer language: a sensitivity language and a privacy
language. The sensitivity language is very similar to Fuzz. However, it also contains
some basic primitives to manage vectors and matrices. As in Fuzz, the vector types come
with multiple distances but differently from Fuzz, Duet also uses the L2 distance. The
main reason for this is that Duet also supports the Gaussian mechanism which calibrates
the noise to the L2 sensitivity of the function. Our work is inspired by this aspect of
Duet, but it goes beyond it by giving a logical foundation to Lp vector distances. Another
language inspired by Fuzz is the recently proposed Jazz [26]. Like Duet, this language has
two products and primitives tailored to the L2 sensitivity of functions for the Gaussian
mechanism. Interestingly, this language uses contextual information to achieve more
precise bounds on the sensitivities. The semantics of Jazz is different from the metric
semantics we study here; however, it would be interesting to explore whether a similar
contextual approach could be also used in a metric setting.

8 Conclusion and Future work
In this work we have introduced Bunched Fuzz, a type system for reasoning about pro-
gram sensitivity in the style of Fuzz [25]. Bunched Fuzz extends the type theory of Fuzz
by considering new type constructors for Lp distances and bunches to manage differ-
ent products in typing environments. We have shown how this type system supports
reasoning about both deterministic and probabilistic programs.

There are at least two directions that we would like to explore in future works. On the
one hand, we would like to understand if the typing rules we introduced here could be
of more general use in the setting of probabilistic programs. We have already discussed
the usefulness for other directions in the deterministic case [21]. One way to approach
this problem could be by looking at the family of products recently identified in [5].
These products give a model for a logic to reason about negative dependence between
probabilistic variables. It would be interesting to see if the properties of these products
match the one we have here.

On the other hand, we would like to understand if Bunched Fuzz can be used to reason
about more general examples in differential privacy. One way to approach this problem
could be to consider examples based on the use of Hellinger distance that have been
studied in the literature on probabilistic inference [6].
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A Term Calculus Proofs
Theorem 4.1. Each derivation of Γ↭ ∆ corresponds to an isomorphism of metric spacesJΓK ∼= J∆K.
Proof. Proof by structural induction on Γ↭ ∆. Let f be the inductive hypothesis.JΓ = ∆K ≜ λ Γ. ΓJΓ1,p Γ2↭ ∆1,p ∆2K ≜ λ (Γ1,Γ2). f Γ1, f Γ2JΓ↭ ·,p ∆K ≜ λ Γ. ((), f Γ)JΓ↭ ∆,p ·K ≜ λ Γ. (f Γ, ())JΓ1,p Γ2↭ ∆2,p ∆1K ≜ λ (Γ1,Γ2). f Γ2, f Γ1J(Γ1,p (Γ2,p Γ3))↭ ((∆1,p ∆2),p ∆3)K

≜ λ (Γ1,p (Γ2,p Γ3)). (f Γ1,p f Γ2),p f Γ3J·,p ∆↭ ΓK ≜ λ ((),∆). f ∆J∆,p ·↭ ΓK ≜ λ (∆, ()). f ∆J((∆1,p ∆2),p ∆3)↭ (Γ1,p (Γ2,p Γ3))K
≜ λ ((∆1,p ∆2),p ∆3)). (f ∆1,p f (∆2,p f ∆3))

Theorem 4.8. Suppose that A and B are proper metric spaces, and let f, g : A → B be
non-expansive. Then dA⊸1B(f, g) = supx dB(f(x), g(x)).

Proof. It suffices to show that, for all r ∈ R≥0
∞ ,

sup
x∈A

dB(f(x), g(x)) ≤ r ⇐⇒ sup
x,y∈A

dB(f(x), g(y))− dA(x, y) ≤ r.

1. ( =⇒ )

By the triangle inequality we know

dB(f(x), g(y)) ≤ dB(f(x), g(x)) + dB(g(x), g(y))

and non-expansiveness gives the inequality

dB(g(x), g(y)) ≤ dA(x, y)

so we can subtract from both sides and get:

dB(f(x), g(y))− dA(x, y) ≤ dB(f(x), g(x)) ≤ r

2. ( ⇐= )

By the definition of sup we get

sup
x,x∈A

dB(f(x), g(x))− dA(x, x) ≤ sup
x,y∈A

dB(f(x), g(y))− dA(x, y) ≤ r

Now simplifying the left hand side we know dA(x, x) = 0 because of identity, so

sup
x∈A

dB(f(x), g(x)) ≤ r

Theorem 4.9. For all non-expansive functions f, g ∈ A → B and p ≥ 1, we have dA⊸1B(f, g) ≤
dA⊸pB(f, g). In particular, the identity function is a non-expansive function of type (A⊸p

B) → (A⊸1 B).
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Proof. Let r1 be the distance between f and g:

dA⊸1B(f, g) = arginf
r1∈R+∪{∞}

∀x, y ∈ A, dB(f(x), g(y)) ≤ r1 + dA(x, y)

and let r2 be the distance between f and g:

dA⊸pB(f, g) = arginf
r2∈R+∪{∞}

∀x, y ∈ A, dB(f(x), g(y)) ≤ p

√
rp2 + dA(x, y)p

Because each arginf of r1 and r2 are both minimizing to the same value: ∀x, y ∈ A, dB(f(x), g(y)),
we can set that constant and say they are minimizing to the same constant c. Also be-
cause the smallest number less than or equal to a constant c is c, we know that each
arginf is minimizing the expressions r1 + dA(x, y) and p

√
rp2 + dA(x, y)p such that they equal c.

This means we have
r1 + dA(x, y) =

p

√
rp2 + dA(x, y)p

Using two properties of the Lp metric we find that r1 ≤ r2. First by the well-ordered
property of the Lp metric,

∀x, y, ||(x, y)||p ≥ ||(x, y)||p+1

So r1 and r2 must vary because dA(x, y) is constant. The Lp metric is also monotone with
regards to its arguments, meaning that if x1 ≤ x2 then ||(x1, y)||p ≤ ||(x2, y)||p.

So given that ||(r1, dA(x, y))||1 = ||(r2, dA(x, y))||p then we know that r1 ≤ r2 to compensate
for the well-ordered property. And because r1 and r2 are the distances returned from
dA⊸pB(f, g) our lemma holds.
Theorem 4.10. The following types are sound for the monadic operations on distribu-
tions, seen as non-expansive operations, for any p ≥ 1:

η : !∞A → ©HA

(−)†(−) : (!∞A⊸p ©HB)⊗2 ©HA → ©HB.

Proof. By unfolding the definitions of non-expansiveness and applying standard results
about the Hellinger distance. We focus on bind. The composition principle for the
Hellinger metric as defined in [7] Proposition 5 is, for µ, ν ∈ DA and f, g ∈ A → DB:

HDB(f
†µ, g†ν) ≤

√
HDA(µ, ν)2 + sup

x∈A
HDB(f(x), g(x))2

This shows that the semantics of bind is a non-expansive map. With some algebraic
manipulation we can see the Hellinger distance satisfies

HDB(f
†µ, g†ν) ≤

√
HDA(µ, ν)2 + sup

x∈A
HDB(f(x), g(x))2

≤ ||(d⃝HA(µ, ν),sup
x∈A

HDB(f(x), g(x)))||2

≤ ||(d⃝HA(µ, ν), d⊸1
(f, g))||2 (by Theorem 4.8).

Hence the type of bind can be expressed as:

(!sA⊸1 ©HB)⊗2 ©HA −→ ©HB.

We obtain the sought type by applying Theorem 4.9.
Theorem 4.12 (Soundness). Given a derivation π proving Γ ` e : τ , then JπK is a non-
expansive function from the space JΓK to the space JτK.
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Γ ≈ ∆

Γ ` e1 : ©Hτ

[x : τ ]1 ` x : τ
Axiom

[x : τ ]s `!x : !sτ
!I

∆,p [x : τ ]s ` e2 : ©Hσ

∆,p [x : !sτ ]1 ` let !x = x in e2 : ©Hσ
!E

∆ ` λx.let !x = x in e2 : !sτ ⊸p ©Hσ
⊸I

Γ,2 ∆ ` (e1, λx.let !x = x in e2) : ©Hτ ⊗2 (!sA⊸p ©Hσ)
⊗I

Contr(2,Γ,∆) ` (e1, λx.let !x = x in e2) : ©Hτ ⊗2 (!sτ ⊸p ©Hσ)
Contr

Figure 5: Derivation for soundness of bind

Proof. Every inductive step in Definition 4.11 is independently non-expansive, and non-
expansive functions combine to create non-expansive functions. Hence our semantics is
sound. Let’s look at some key cases. Consider the ⊸E case: (variable names have been
slightly altered to avoid confusion)

Γ ` f : A⊸p B ∆ ` e : A

Γ,p ∆ ` f e : B
⊸E J⊸E π1 π2K ≜ λ(γ, δ). Jπ2K γ (Jπ1K δ)

The ⊸E rule takes two derivations π1 and π2 of types A⊸p B and A respectively. Jπ1K is a
non-expansive function in the set JΓK → JAK → JBK. Jπ2K is a non-expansive function in the
set J∆K → JAK. We want to create a non-expansive function of type JΓ,p ∆K → JBK which
expands to JΓK × J∆K → JBK. So the function we make is from a pair of environments to aJBK. Jπ2Kδ applies the interpretation of π2 to δ to get an element of JAK. This is then used
as an argument for Jπ2K to get an element of JBK. All functions are non-expansive so the
created function is also non-expansive. As a simpler example, consider the !I rule.

Γ ` e : A

sΓ ` !e : !sA
!I J!I πK ≜ JπK

This is non-expansive because enforcing sensitivity constraints happens at the type level
and is used in the distance metric for the set. Recall that the distance metric for J!AK is
d!A(x, y) = s · dA(x, y). So the carrier set for the type J!sAK is just JAK.

To restate the proof, all individual steps in the proof are non-expansive, which compose
into larger non-expansive functions and so the semantics are sound.

B Extra Examples
Zero and Infinity The choice of ∞ · 0 = 0 · ∞ = ∞ is a careful one to avoid bugs and
preserve soundness. We are using the same behavior as [3]. Another possible definition
would be that of [4]. To see why this must be the behavior of multiplying zero and
infinity, consider the following Fuzz program.

if x < y
then 1
else 0 which desugars to

case x < y of
| inl () -> 1
| inr () -> 0
end

x and y should be marked as ∞-sensitive because we are using the < operation with
them, however the body of the case is zero sensitive to the value returned by x < y so
the sensitivity of the expression will be: ∞ · 0 = ∞
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[f : (A⊗p B)⊸p B]1 ` f : (A⊗p B)⊸p B
Ax [a : A]1 ` a : A

Ax
[b : B]1 ` b : B

Ax

[a : A]1,p [b : B]1 ` (a, b) : A⊗p B
⊗I

[f : (A⊗p B)⊸p B]1, ([a : A]1,p [b : B]1) ` f(a, b) : C
⊸E

([f : (A⊗p B)⊸p B]1, [a : A]1),p [b : B]1 ` f(a, b) : C
Exch

[f : (A⊗p B)⊸p B]1, [a : A]1 ` λb.f(a, b) : B⊸p C
⊸I

[f : (A⊗p B)⊸p B]1 ` λa.λb.f(a, b) : A⊸p B⊸p C
⊸I

[x : A⊗p B]1 ` x : A⊗p B
Ax

[f : A⊸p B⊸p C]1 ` f : A⊸p B⊸p C
Ax

[a : A]1 ` a : A
Ax

[f : A⊸p B⊸p C]1,p [a : A]1 ` fa : B⊸p C
⊸E

[b : B]1 ` b : B
Ax

([f : A⊸p B⊸p C]1,p [a : A]1),p [b : B]1 ` f a b : C
⊸E

[f : A⊸p B⊸p C]1,p ([a : A]1,p [b : B]1) ` f a b : C
Exch

[f : A⊸p B⊸p C]1,p [x : A⊗p B] ` let (a, b) = x in f a b : C
⊗E

[f : A⊸p B⊸p C]1 ` λx. let (a, b) = x in f a b : A⊗p B⊸p C
⊸I

Figure 6: Derivation of currying and uncurrying

Rotations As a warm-up, let us consider how we can extend Bunched Fuzz with a prim-
itive for computing rotations on the Cartesian plane. Given a rotation angle θ ∈ R, we
define the following function Rθ:

Rθ : R2 → R2

Rθ(x, y) = (cos(θ)x− sin(θ)y,sin(θ)x+ cos(θ)y).
Using the L2 distance we have, for any (x, y), (x′, y′) ∈ R2:

d2(Rθ(x, y), Rθ(x
′, y′)) = d2((x, y), (x

′, y′)).

So, as a function on (R2, d2), Rθ is non-expansive. In other words, it has type R⊗2R⊸ R⊗2R.
Note that, by contrast, Rθ is not non-expansive for the L1 or L∞ distances. For instance,

suppose that θ = π/4, and let p = (
√
2/2,

√
2/2). Then

Rθ(0, 0) = (0, 0) Rθ(1, 0) = p Rθ(p) = (0, 1).

Thus, d1(Rθ(0, 0), Rθ(1, 0)) =
√
2/2 +

√
2/2 =

√
2, which is strictly larger than d1((0, 0), (1, 0)) =

1. Similarly, d∞(Rθ(0, 0), Rθ(p)) = max(0, 1) = 1, which is strictly larger than d∞((0, 0), p) =
max(√2/2,

√
2/2) =

√
2/2.

Computing distances Suppose that the type τ denotes a proper metric space. Then we
can incorporate its distance function in Bunched Fuzz with the type

τ ⊗1 τ ⊸ R.

Indeed, let x, x′, y and y′ be arbitrary elements of JτK. Then
d(x, y)− d(x′, y′) ≤ d(x, x′) + d(x′, y′) + d(y′, y)− d(x′, y′)

= d(x, x′) + d(y, y′)

= dJτ⊗1τK((x, y), (x′, y′)).

By symmetry, we also know that d(x′, y′) − d(x, y) ≤ dJτ⊗1τK((x, y), (x′, y′)). Combined, these
two facts show

dR(d(x, y), d(x
′, y′)) = |d(x, y)− d(x′, y′)|

≤ dJτ⊗1τK((x, y), (x′, y′)),

which proves that the metric on JτK is indeed a non-expansive function.
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Distributivity properties In linear logic the following distributivity properties are deriv-
able:

A⊗ (B ⊕ C) ` (A⊗B)⊕ (A⊗ C)

(A⊗B)⊕ (A⊗ C) ` A⊗ (B ⊕ C)

(A&B)⊕ (A& C) ` A& (B ⊕ C).

However, & does not distribute perfectly over ⊕, since the converse of the last statement
does not usually hold:

A& (B ⊕ C) 6` (A&B)⊕ (A& C).

By contrast, in Bunched Fuzz, ⊗p does distribute over ⊕, as witnessed by the following
judgments

[u : τ ⊗p (σ ⊕ ρ)]1 ` t1 : (τ ⊗p σ)⊕ (τ ⊗p ρ)

[u : (τ ⊗p σ)⊕ (τ ⊗p ρ)]1 ` t2 : τ ⊗p (σ ⊕ ρ),

where
t1 = let (u1, u2) = u in case u2 of

| x. inj1(u1, x)

| y. inj2(u1, y)

t2 = case u of
| x. let (x1, x1) = x in (x1, inj1x2)

| y. let (y1, y1) = y in (y1, inj2y2)
We can also show the following distributivity properties of scaling:

[x : τ ⊗p σ]r ` t1 : !rτ ⊗p !rσ

[z : !r !sτ ]1 ` t2 : !s !rτ

where t1 and t2 are
t1 = let (x1, x2) = x in (!rx1, !rx2)

t2 = let !y = z in let !w = y in !!w.

Programming with matrices The Duet language [22] provides several matrix types with
the L1, L2, or L∞ metrics, along with primitive functions for manipulating them. In Bunched
Fuzz, these types can be defined directly as follows

Mp[m,n] = ⊗m
1 ⊗n

p R.

Following Duet, we use the L1 distance to combine the rows and the Lp distance to
combine the columns. One advantage of having types for matrices defined in terms of
more basic constructs is that we can program functions for manipulating them directly,
without resorting to separate primitives. For example, we can define the following terms
in the language:

addrow : Mp[1, n]⊗1 Mp[m,n]⊸Mp[m+ 1, n]

addcolumn : M1[1,m]⊗1 M1[m,n]⊸M1[m,n+ 1]

addition : M1[m,n]⊗1 M1[m,n]⊸M1[m,n].

The first program, addrow, appends a vector, represented as a 1 × n matrix, to the first
row of a m× n matrix. The second program, addcolumn, is similar, but appends the vector
as a column rather than a row. Because of that, it is restricted to L1 matrices. Finally,
the last program, addition, adds the elements of two matrices pointwise.

One drawback of our encoding is that these programs need to be defined separately
for each matrix dimension. In practice, it would be desirable to have a dependently typed
version of Bunched Fuzz, along the lines of DFuzz [14], to simplify the manipulation of
matrices of arbitrary size.
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Metrics for lists and inductive types In Fuzz, we can define two list types using recur-
sion [25]:

list τ = µα.1⊕ (τ ⊗ α) alist τ = µα.1⊕ (τ & α).

Following prior work [4], these types can be interpreted as metric spaces, by computing
the initial algebra of a certain functor. The carrier of these metric spaces is the set of
lists over JτK, endowed with the following metrics:

dlist(l, l
′) =

{
∞ if |l| 6= |l′|∑n

i=1 dA(li, l
′
i) if |l| = |l′| = n

dalist(l, l
′) =

{
∞ if |l| 6= |l′|
maxn

i=1 dA(li, l
′
i) if |l| = |l′| = n.

This construction can be easily adapted to Bunched Fuzzand generalized. First, we ex-
tend Bunched Fuzz with inductive types, by which we mean recursive types with strictly
positive recursive occurrences (dealing with arbitrary recursive types should be possible
by using a variant of metric CPOs [4]). Then, we define

plist τ = µα.1⊕ (τ ⊗p α).

To interpret such inductive types, we follow the standard recipe. First, by standard cat-
egorical arguments, we can show that the category of metric spaces and non-expansive
functions has colimits of chains. Specifically, given a chain Xi of metric spaces, we can
define X∞ = colimi Xi via the formula

|X∞| = colim
i

|Xi|

dX∞ = inf
i
d∗Xi

,

where d∗Xi
denotes the pushforward of the metric dXi

into |X∞|. Second, we note that a
type expression τ with one free type variable α corresponds to a cocontinuous functor on
metric spaces, because it is formed by composing cocontinuous functors. We can compute
the initial algebra of this functor as the colimit of a certain chain, which we take to be
the interpretation of µα.τ .

In the case of plist τ , by unfolding definitions, we obtain the following metric:

dplist τ (l, l
′) =

{
∞ if |l| 6= |l′|
p
√∑n

i=1 dA(li, l
′
i) if |l| = |l′| = n.

In the cases p ∈ {1,∞}, this reduces to the previous distances on lists (where, in the case
p = ∞, we take the limit of the right-hand side when p → ∞).

The plist τ type is equipped with the following constructors:

nil : plist τ
cons : τ ⊗p plist τ ⊸ plist τ.

Moreover, we can define functions on lists by structural recursion, which we can soundly
add to Bunched Fuzz thanks to the universal property of initial algebras. For example:

append : plist τ ⊗p plist τ ⊸ plist τ.

K-Means The k-means algorithm is an iterative algorithm for finding multiple means in a
set of datapoints. These means can be thought of as approximate “centers” of groupings
in the dataset. A differentially private version of the k-means algorithm typed in Fuzz
had been given in [25], using the Laplace mechanism. Here we revisit this example to
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illustrate how by using Bunched Fuzz typing and Lp one can refine the sensitivity analysis
of an algorithm.

The iterate Fuzz term defined in [25] takes a set of data points, a list of centers and
returns an updated list of centers, obtained by grouping each data point to the center it
is closest to, adding Laplacian noise and then taking the new centers to be the mean of
each group. It was given the following Fuzz type8

iterate : !3(set pt)⊸!∞(list pt)⊸©P (list pt)

The 3 sensitivity of iterate in its first data points set argument comes from the fact that
this argument is used 3 times in the term, thus the Fuzz contraction rule (in L1) leads
to an index 3 for the ! of this argument. The idea here is to use instead in Bunched
Fuzz contraction in a Lp bunch context, which will lead to an index p

√
3 instead of 3. For

enabling that one needs to change the type of the zip intermediate function, replacing⊸
with ⊸p. Then this forces to take for points the type pt = R⊗p R (so using the Lp metric),
for lists the type plist τ , and to change accordingly the type of map and of the other
intermediary functions. We obtain the following types:

pt ≜ R⊗p R
assign :!∞(plist pt)⊸p set pt⊸p set(pt⊗p int)

partition : set(pt⊗p int)⊸p plist(set pt)
totx, toty : set pt⊸ R

zip : plist τ ⊸p plistσ⊸p plist(τ ⊗p σ)

pmap : !∞(τ ⊸p σ)⊸p (plist τ)⊸p plistσ

The term assign takes a list of means and a database and returns pairs of points
matched with the index of the closest mean given in the list of means. partition takes
these labeled points and splits them into a list of sets of points. totx and toty calculate the
total of the x or y coordinates respectively in a set of points. zip is the usual zip function
on lists, and pmap is the usual map function adapted to our fixed Lp space. Finally, seq
binds over every element in a list to take a list of distributions and return a distribution
over lists.

seq : plist(©P τ)⊸p ©P (plist τ)
seq [] = []

seq x :: xs =mlet y = x in mlet ys = seq xs in return y :: ys

The k-means algorithm is defined below. The user supplies a database and a set of k
initial means. The means are either initialized to random points within the dataset or are
the output of a previous iteration of the algorithm. The datapoints are then grouped by
distance to each mean using assign and new means are calculated by taking the average
of each groups x’s and y’s.

iterate : ! p√3( set pt)⊸p!∞(plist pt)⊸p ©P (plist pt)
iterate b ms = let !b′ = b inlet b′′ = partition (assign ms b′) inlet tx = pmap(add_noise ◦ totx) b′′ inlet ty = pmap(add_noise ◦ toty) b′′ inlet t = pmap(add_noise ◦ size) b′′ inlet stats = zip (zip (tx, ty), t) in

seq (pmap avg stats)

8Actually there were two typos on types in [25]; the type of iterate given here is the right corrected one, as
well as the type of zip.
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Note that if we take p = 1 we have exactly the same type derivation as in [25] in Fuzz.
It is also possible to write a variant of this program which instead of building two lists,

one for component x and one for component y, builds a single lists of vectors in R ⊗p R
by using a map on the function vectorSum defined before. The sensitivity obtained with
respect to the set of data points argument is then 1+21/p. For this variant one only uses
Bunched Fuzz connective ⊗p for the underlying vector type R⊗pR but one keeps the Fuzz
versions (with ⊸) of map, zip, assign…The noise is also added by the Laplace mechanism.
Proposition 4.6. Suppose that we have two bunches Γ ≈ ∆. The carrier sets of JΓK and J∆K
are the same. Moreover, for any p, the diagonal function δ(x) = (x, x) is a non-expansive
function of type JContr(p,Γ,∆)K → JΓK ⊗p J∆K.
Proof. By induction on the derivation of Γ ≈ ∆. The first point is trivial, since ≈ relates
bunches that differ only on variable names and sensitivities, which do not affect the
carrier sets. Thus, we focus on the last point. The case p = ∞ is easier, since in this case
Contr(∞,−,−) takes the pointwise maximum of all the sensitivities in the contexts, and
because ⊗∞ becomes a true product in the categorical sense. Now, suppose that p < ∞.

• If Γ and ∆ are empty, then the domain and codomain of δ is reduced to a singleton
set. Thus, δ is trivially non-expansive.

• Now suppose that Γ = [x : τ ]s and [y : τ ]r. We need to show that the diagonal function
is a non-expansive function of type

! p
√
sp+rpJτK → !sJτK ⊗p !rJτK.

Let X denote the domain of this map, and Y the codomain. First, suppose that p < ∞.
Non-expansiveness holds because

dY ((x, x), (y, y)) =
p
√

(s · d(x, y))p + (r · d(x, y))p

= p
√

(sp + rp)d(x, y)p

= p
√
sp + rpd(x, y)

= dX(x, y).

If p = ∞, the above root is actually defined as max(s, r). In this case, we have
dY ((x, x), (y, y)) =max(s · d(x, y), r · d(x, y))

≤max(max(s, r) · d(x, y),max(s, r) · d(x, y))
=max(s, r) · d(x, y)
= dX(x, y).

• Now suppose that Γ = Γ1,q Γ2, ∆ = ∆1,q ∆2, Γ1 ≈ ∆1 and Γ2 ≈ ∆2. Abbreviate c(p, q) =

2|
1
p−

1
q | as just c. By induction, the diagonals are non-expansive functions of types

JContr(p,Γ1,∆1)K → JΓ1K ⊗p J∆1KJContr(p,Γ2,∆2)K → JΓ2K ⊗p J∆2K.
We can rewrite the diagonal on JContr(p,Γ,∆)K as the composite

JContr(p,Γ,∆)K
= !cJContr(p,Γ1,∆1)K ⊗q !cJContr(p,Γ2,∆2)K Proposition 4.3, def.
→ !c(JΓ1K ⊗p J∆1K)⊗q !c(JΓ2K ⊗p J∆2K) induction
= !c((JΓ1K ⊗p J∆1K)⊗q (JΓ2K ⊗p J∆2K)) Proposition 4.2
→ (JΓ1K ⊗q JΓ2K)⊗p (J∆1K ⊗q J∆2K) Proposition 4.5
= J(Γ1,q Γ2)K ⊗p J(∆1,q ∆2)K
= JΓK ⊗p J∆K.

31



s ≥ 1

[x : τ ]s ` x : τ
Axiom

· ` r : R
RI

· ` () : 1
1I

Γ ,p [x : τ ]1 ` e : σ

Γ ` λx.e : τ ⊸p σ
⊸Ialg Γ ` f : τ ⊸p σ ∆ ` e : τ Γ ≈ ∆

Contr(p,Γ,∆) ` f e : σ
⊸Ealg

Γ ` e1 : τ ∆ ` e2 : σ Γ ≈ ∆

Contr(p,Γ,∆) ` (e1, e2) : τ ⊗p σ
⊗Ialg ∆ ` e1 : τ ⊗p σ Γ,q ([x : τ ]s ,p [y : σ]s) ` e2 : ρ Γ ≈ ∆

Contr(p,Γ, s∆) ` letq (x,p y) = e1 in e2 : ρ
⊗Ealg

Γ ` e : τ

Γ ` inj1e : τ ⊕ σ
⊕1I alg

Γ ` e : σ

Γ ` inj2e : τ ⊕ σ
⊕2I alg

Γ ` e1 : τ ⊕ σ ∆,p [x : τ ]s ` e2 : ρ ∆,p [y : σ]s ` e3 : ρ Γ ≈ ∆

Contr(p,∆, sΓ) ` casep e1 of x. e3 | y. e3
⊕Ealg

Γ ` e : τ

sΓ ` !e : !sτ
!I Γ ` e1 : !rτ ∆,p [x : τ ]rs ` e2 : σ

Contr(p,∆, sΓ) ` letp !x = e1 in e2 : σ
!E alg

Γ ` e1 : ©P τ ∆,p [x : τ ]s ` e2 : ©Pσ Γ ≈ ∆

Contr(1,Γ,∆) `mletp x = e1 in e2
Bind-P Γ ` e : τ

∞Γ ` return e : ©P τ
Return-P

Γ ` e1 : ©Hτ ∆,p [x : τ ]s ` e2 : ©Hσ Γ ≈ ∆

Contr(2,Γ,∆) `mletp x = e1 in e2
Bind-H Γ ` e : τ

∞Γ ` return e : ©Hτ
Return-H

Figure 7: Algorithmic Rules

C Algorithmic Rules
The system of algorithmic rules is displayed on Fig. 7.

D The language as a logic
We give an alternative presentation of the non-probabilistic fragment of Bunched Fuzz
as a logic, by means of a sequent calculus. This logic shares many of the properties of
Bunched Fuzz. We have also proved a cut elimination result for it.

Bunches with multiple holes labeled by a set of variables X are denoted with Γ{x 7→
⋆}x∈X .

Formulas The syntax of formulas follows much of the same structure as Bunched Fuzz’s
type system.

A,B ::= 1 | ⊥ | R | !sA | A⊸p B | A⊗p B | A⊕B

p ∈ R≥1
∞ , s ∈ R≥0

∞
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[A]1 ` A
Axiom

· ` R
RR

· ` 1
1R Γ(·) ` A

Γ([1]1) ` A
1L

Γ([⊥]s) ` A
⊥ L Γ ,p [A]1 ` B

Γ ` A⊸p B
⊸R

Γ ` A ∆([B]s) ` C

∆([A⊸p B]1 ,p sΓ) ` C
⊸L Γ ` A ∆ ` B

Γ ,p ∆ ` A⊗p B
⊗R Γ([A]s ,p [B]s) ` C

Γ([A⊗p B]s) ` C
⊗L Γ ` A

Γ ` A⊕B
⊕1R

Γ ` B

Γ ` A⊕B
⊕2R

Γ([A]s) ` C Γ([B]s) ` C

Γ([A⊕B]s) ` C
⊕L Γ ` A

sΓ ` !sA
!R Γ([A]r·s) ` B

Γ([!rA]s) ` B
!L Γ(∆ ,p ∆

′) ` A ∆ ≈ ∆′

Γ(Contr(p,∆,∆′)) ` A
Contr

Γ ` A ∆([A]s) ` B

∆(sΓ) ` B
Cut Γ ` A Γ↭ Γ′

Γ′ ` A
Exch Γ(·) ` A

Γ(∆) ` A
Weak

Figure 8: Inference Rules of Bunched Fuzz’s Logic

Bunches Environments are defined as

Γ ::= · | [A]s | Γ ,p Γ

and enjoy the same properties as in Bunched Fuzz.

Cut Elimination The Cut rule is admissible in Bunched Fuzz’s Logic. The complicated part
of this proof is tracking any instances of the principal formula higher in the derivation
tree. This is necessary because of the generalized contraction rule: any principal formula
can be the result of a contraction. The main engine of cut elimination is the following
theorem.
Theorem D.1. Given formulas A, B, context Γ, and context ∆ with n holes labeled by a
set of variables X, two cut-free derivations Γ ` A and ∆{x 7→ [A]sx}x∈X ` B, then there is
a cut-free derivation of ∆{x 7→ sxΓ}x∈X ` B.

Semantics of the Logic Bunched Fuzz’s logic has a similar semantics to metric spaces.
Bunches have the same interpretation as in the language, and formulas interpretations
are the same as their type counterparts. The semantics of derivations are described in
Definition D.2
Definition D.2. Every derivation τ of Γ ` A has an interpretation to a non-expansive
function of type JΓK → JAK

By structural induction on τ .JAxiomK ≜ λx. xJRRK ≜ λ(). r ∈ RJ1RK ≜ λ(). 1J1L πK ≜ λΓ(1). JπK Γ( () )J⊸ R πK ≜ λΓ. λA. JπK (Γ, A)J⊸ L π1 π2K ≜ λ∆(f,Γ). Jπ2K∆(f(Jπ1K))J⊗R π1 π2K ≜ λ(Γ,∆). (Jπ1K Γ), (Jπ2K ∆)J⊗L πK ≜ λΓ(a, b). (JπK Γ(a, b))J⊕iR πK ≜ λΓ. injiJπK ΓJ⊕L π1 π2K ≜ λΓ(inj1 a). Jπ1K Γ(a)J⊕L π1 π2K ≜ λΓ(inj2 b). Jπ2K Γ(b)J!R πK ≜ JπKJ!L πK ≜ JπKJContr πK ≜ λΓ(∆). JπK Γ(∆,∆)
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JCut π1 π2K ≜ λ∆(Γ). Jπ2K∆(Jπ1KΓ)JExch πK ≜ λΓ′.JπKΓJWeak πK ≜ λΓ(∆). JπK Γ( () )
Theorem D.3. The logic satisfies cut elimination: given a derivation of Γ ` A, there
exists another derivation of Γ ` A that does not use the cut rule.

Proof. Let τ be a derivation of Γ ` A. Show there exists τ ′ which proves Γ ` A that does
not use a cut rule. By induction on the height of τ

• One premise: recur (1)
• Two premise: recur (2)
• Cut rule
let π1 be the derivation of Γ ` A and π2 be the derivation of ∆([A]s) ` B. We need to
show there exists a cut-free derivation of ∆(sΓ) ` B. Start by calling the IH on π1 and
π2 to get cut-free derivations π′

1 and π′
2 their respective proofs. Now by Theorem D.1

we can combine π′
1 and π′

2 to obtain the desired derivation.

Theorem D.1. Given formulas A, B, context Γ, and context ∆ with n holes labeled by a
set of variables X, two cut-free derivations Γ ` A and ∆{x 7→ [A]sx}x∈X ` B, then there is
a cut-free derivation of ∆{x 7→ sxΓ}x∈X ` B.

Proof. By induction on A with inner induction on π1 and π2.
Let IH1 denote induction appealing to the outer measure (size of A) and IH2 denote

induction appealing to the inner measure (size of π1 and π2).
In each of the key cases the environment of the premise of π2 will have exactly one

hole, we name this hole z. If the hole is a hole that’s being tracked in ∆ then we transform
based on the key case. If not then we use IH2 on the premise and continue.

First we address the non-key cases

• If there are not more holes being tracked in ∆ then we are done.
• π1 is a left introduction rule. Push π2 upwards in π1 and call IH2

• π2 is a right introduction rule. Push π1 upwards in π2 and call IH2

• π2 is a left introduction rule, but it does not introduce the principal formula of π1. i.e.
Γ ` A and ∆(C) ` B. Push π1 upwards in π2 and call IH2

• Suppose the last rule in π2 is Contr.

Γ ` A

∆′(Ψ1 ,p Ψ2) ` B

∆′(Contr(p,Ψ1,Ψ2)) ` B
Contr

The situation looks like this: ∆{x 7→ [A]sx}x∈X = ∆′(Ψ), where Ψ = Contr(p,Ψ1,Ψ2) and
∆′ is a context with only one hole, z. Without loss of generality we assume z /∈ X.
Some of the variables in X fall in a subtree of Ψ, call this subset Y . This means that
Ψ, Ψ1, Ψ2, and ∆′ are of the form:

Ψ = Ψ′{y 7→ [A]Lp(ay,by)}y∈Y

Ψ1 = Ψ′
1{y 7→ [A]ay

}y∈Y

Ψ2 = Ψ′
2{y 7→ [A]by}y∈Y

∆′(·) = ∆′′

{
x 7→ [A]sx , x ∈ X \ Y
z 7→ ·
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Where the ay’s and by’s are vectors of numbers such that sy = Lp(ay, by), and ∆′′ is a
generalization of ∆′ with holes from (X \ Y ) ∪ {z}
Now apply the following transformation to the derivation.

Γ ` A ∆1 ` B

∆2 ` B
IH2

∆3 ` B
!Contr

where

∆1 = ∆′′

{
x 7→ [A]sx , x ∈ X \ Y
z 7→ Ψ′

1{y 7→ [A]ay
}y∈Y ,p Ψ

′
2{y 7→ [A]by}y∈Y

∆2 = ∆′′

{
x 7→ sxΓ, x ∈ X \ Y
z 7→ Ψ′

1{y 7→ ayΓ}y∈Y ,p Ψ
′
2{y 7→ byΓ}y∈Y

∆3 = ∆′′

{
x 7→ sxΓ, x ∈ X \ Y
z 7→ Contr(p,Ψ′

1{y 7→ ayΓ}y∈Y ,Ψ
′
2){y 7→ byΓ}y∈Y )

• Last inference rule in π2 is Weak.

Γ ` A

∆′(·) ` B

∆′(Ψ)
!Weak

Unifying our contexts we find that ∆{x 7→ [A]sx}x∈X = ∆′(Ψ).
Find set of variables Y which correspond to the holes in a subtree of Ψ. Name ∆′’s
hole z. Construct a copy of ∆ named ∆′′ with holes (X \ Y ) ∪ {z}. Also construct a
copy of Ψ named Ψ′ with all holes in Y .

∆{x 7→ [A]sx}x∈X = ∆′′

{
x 7→ [A]sx , x ∈ X \ Y
z 7→ Ψ′{y 7→ [A]sy}y∈Y }

Ψ = Ψ′{y 7→ [A]sy}y∈Y }

Γ ` A ∆′′{x 7→ [A]sx , z 7→ ·}x∈X\Y ` B

∆′′{x 7→ sxΓ, z 7→ ·}x∈X\Y ` B
IH2

∆′′{x 7→ sxΓ, z 7→ Ψ′{y 7→ syΓ}y∈Y }x∈X\Y ` B
Weak

Now we address the key cases
• (1R, 1L)

· ` 1
1R ∆(·) ` A

∆(1) ` A
1L

⇝

∆(·) ` A

• (⊸R, ⊸L)
Γ ,p [A]1 ` B

Γ ` A⊸p B
⊸R ∆ ` A Ψ([B]s) ` C

Ψ([A⊸p B]1 ,p s∆) ` C
⊸L

⇝

∆ ` A

Γ ,p [A]1 ` B Ψ([B]s) ` C

Ψ(sΓ ,p [A]s) ` C
IH1

Ψ(sΓ ,p s∆) ` C
IH1
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• (⊗R, ⊗L)
Γ ` A ∆ ` B

Γ ,p ∆ ` A⊗p B
⊗R Ψ([A]s ,p [B]s) ` C

Ψ([A⊗p B]s) ` C
⊗L

⇝

Γ ` A

∆ ` B Ψ([A]s ,p [B]s) ` C

Ψ([A]s ,p s∆) ` C
IH1

Ψ(sΓ ,p s∆) ` C
IH1

• (⊕iR, ⊕L)
Γ ` Ai

Γ ` A1 ⊕A2

⊕iR
∆([A1]s) ` B ∆([A2]s) ` B

∆([A1 ⊕A2]s) ` B
⊕L

⇝

Γ ` Ai ∆([Ai]s) ` B

∆(sΓ) ` B
IH1

• (!R, !L)
Γ ` A

sΓ ` !sA
!R ∆([A]s·r) ` B

∆([!sA]r) ` B
!L

⇝

Γ ` A ∆([A]s·r) ` B

∆(srΓ ` B
IH1
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